

Final Design Report
NavG - NGCP

Gonzalo Arana
Alexander Garcia

Justin Nguyen
Andy Velazquez

1

Introduction 2
Project Overview 2
Clients & Community Partners 2
Stakeholders 2
Project Goals and Objectives 2
Project Outcomes and Deliverables 3

Background 4
Mission Overview 4
Similar Systems 4

Modern Self-Driving Cars 4
Peripheral Information 5

RPLiDAR A2 5
ZED Mini Stereoscopic Camera 5
Jetson Nano 5

Engineering Specifications 6
Stakeholder Requirements 6
Capstone System Requirements 7
Capstone System Use Cases 8

Design Development 10
Hardware 10

Plexiglass board with mounted components 10
RC car with mounted components 10
Stereoscopic Camera 12
Pixhawk 12

Software 12

Final Detailed Design 14

System Integration & Testing 17
Capstone System Requirements Met 17
Capstone System Requirement Partially Met 17
Capstone System Requirement Not Met 17
Future Work 18

Management Plan 19

References 20

Appendix 21
Bill of Materials 21
Gantt Chart 22
NGCP CPSLO UGV System Requirements 23

2

Introduction
Our Capstone team is assisting the Northrop Grumman Collaboration Project (NGCP) with
sensing and intelligence for one of their new vehicles. NGCP’s focus this year is to perform a
rescue operation in a disaster zone using four autonomous vehicles, two from CP SLO and
two from CP Pomona. The sensing and navigation system our team is designing is for the
Cal Poly San Luis Obispo Unmanned Ground Vehicle (CPSLO UGV). This system will be
used to autonomously and safely guide the CPSLO UGV through an obstacle course that
simulates a field of debris in an actual natural disaster.

Project Overview
To safely navigate the obstacle course, the UGV will need to be constantly examining its
surroundings, checking if there are any unoccupied and unvisited areas near it, and keeping
record of all movements for backtracking. To handle the environmental awareness, the
system uses a LiDAR and a stereoscopic camera in order to get as much information about
its surroundings as possible. This sensor data is gathered, stored, and visualized in real time
in a software platform named Robot Operating System (ROS). ROS also provides a global
and local map that are capable of being updated in real time and display a grid of occupied
and unoccupied spots nearby. This occupancy grid is then used to make decisions about
where to travel and these decisions are ideally kept in a record that can be accessed later.

Clients & Community Partners
The primary client for this project is the Cal Poly SLO NGCP group. Northrop Grumman, who
initially started and funded this project 8 years ago, is our client indirectly through NGCP.
Our point of contact for Nothrop Grumman and issues relating to the NGCP program is Dr.
Lynne Slivovsky. Our point of contact for the CPSLO UGV team is Michael Di Giorgio.

Stakeholders
Besides Northrop Grumman, the CPP and CPSLO NGCP groups, and our Capstone group,
other stakeholders in this project include emergency services, police, fire, search and
rescue, FEMA, organizations that conduct rescue for disasters, and volunteers for disaster
rescue. Disaster victims and communities as a whole around disaster areas are also
stakeholders.

Project Goals and Objectives
Our team’s goal is to design and implement the sensing and intelligence system for the
CPSLO UGV that will allow it to complete its mission. The objectives necessary to meet this
goal are as follows:

3

1. Interface with the mechanical design to ensure the sensing and intelligence system
can adequately control the vehicle with the constraints set by the car’s components,
mechanics, and capacity.

2. Design a fully-tested object detection and avoidance system to enable autonomous
driving within the constraints laid out by the customer.

3. Design a fully-tested waypoint navigation system to provide guidance to the vehicle
and (coupled with the collision detection and avoidance system) allow the vehicle to
navigate to its intended target.

4. Support a manual driving mode that enables the CPSLO UGV to be safely tested and
operated.

5. A fully integrated solution with the rest of the NGCP tools and ecosystem with ample
documentation to ensure smooth knowledge transfer between teams and the
customer.

Project Outcomes and Deliverables
By the end of next quarter, we will have all of the main navigation peripherals that the
CPSLO UGV will use, as well as libraries written for interfacing with these peripherals. We
will have also implemented basic autonomous navigation and obstacle avoidance using
these peripherals. Given the different timelines that our team is operating on compared to
the greater NGCP team, we will be demoing this functionality at the end of next quarter using
a test vehicle separate from the real CPSLO UGV. This demo will likely take place at the
Educational Flight Range, near Cuesta College. The demo will involve setting up an obstacle
course at this site, consisting of obstacles such as cinder blocks, large rocks, and ramps. If
there is sufficient progress made on the CPSLO UGV by the end of next quarter, then this
demo may take place using the CPSLO UGV.

4

Background

Mission Overview
This design challenge provided by Northrop Grumman for the 2019-2020 school year is an
autonomous rescue system composed of two terrain vehicles and two aerial vehicles. The
goal for these vehicles is to perform a two-stage rescue. Stage one is reconnaissance and
initial approach. This stage involves using an unmanned aerial vehicle (UAV) to determine
where a person in need is located and instructing a larger, unmanned ground vehicle (UGV)
to approach the area as quickly as possible without using any obstacle detection. Before
leaving base, the larger UGV will load a smaller, rescue UGV inside of itself. The second
stage is obstacle avoidance and extraction. As the large UGV reaches the disaster area, it
will need to switch into an obstacle avoidance mode that will allow it to safely traverse debris
as it approaches the person in need. Once at the destination, the smaller UGV will unload
itself, approach and prepare the person for extraction, and await the person’s extraction
using a vertical takeoff and landing (VTOL) vehicle. As the VTOL completes extraction, the
two UGV robots will conviene, reload, and return to base.

Similar Systems

Modern Self-Driving Cars
There are six main components for a self-driving car. The three main hardware components
consist of sensors, V2X, and actuators. Sensors describe the components that allow the
vehicle to gather information about the environment. V2X allows for communication between
the vehicle and other components in the environment. Actuators enable the physical
movement of the car.

The three main software components for self driving cars are perception, planning, and
control. Perception describes the analysis of data obtained from sensors and V2X. Planning
refers to the decision making process that the car undergoes given the data that it can
perceive. Control refers to the conversion of planned actions into actual movement through
enabling the actuators.

Our role in the project allows us to focus on three of these components: sensors, perception,
and planning. Modern self-driving cars often use sensors such as GPS, IMUs, cameras, and
LiDAR. According to Nvidia, a fully autonomous driverless car would need the computing
power to perform 320 trillion operations per second and keep power consumption at 500
watts. This computing power is what allows self driving cars to perform the perception and
planning required to navigate a self-driving car. Given these insights into traditional
self-driving cars, we have decided on a set of similar peripherals to look into using for the
CPSLO UGV in order to perform the same type of behavior as traditional self-driving cars,
but on a much smaller scale.

5

Peripheral Information

RPLiDAR A2
The RPLiDAR A2 is a 2D LiDAR. It has a scanning range of 18 meters and can retrieve
8000 samples per second. There are ROS nodes available for use with the RPLiDAR. We
are able to get 2D Laser Scan data from these nodes, which can be easily used as an input
for SLAM and route planning. It’s also relatively low cost for a lidar, costing $370.

ZED Mini Stereoscopic Camera
The ZED Mini utilizes high definition stereo video in order to create 3D depth. It also has a
built in accelerometer and gyroscope, allowing us to have an IMU built directly into the
camera. The ZED Mini also has plenty of sample ROS nodes available on the internet.
These nodes are able to retrieve data from the camera in point cloud form, allowing for easy
integration with SLAM and local route planning tools. It is a little pricey, with a price tag of
$399. However, this is significantly cheaper than other alternatives for providing a 3D point
cloud, such as a 3D LiDAR.

Jetson Nano
The Jetson Nano is capable of running Desktop Linux, and by extension, ROS. ROS
provides a lot of open source interfaces with popular peripherals, namely the ones that we
planned on using for the vehicle. It also has support for SLAM, Simultaneous Localization
and Mapping, an essential feature for performing navigation without the use of GPS. The
Jetson Nano itself is able to process data from multiple sensors in parallel, and has the
computing power to utilize neural networks and computer vision. It’s also rather inexpensive,
costing only $99. Overall, it was able to connect with the peripherals that we chose to use for
this vehicle, while also providing a means for easy support to use these peripherals.

6

Engineering Specifications

Stakeholder Requirements
The following stakeholder requirements were derived from the RFP from Northrop Grumman
by our team and the NGCP management.

Stakeholder Requirements

ID Requirement

SD1
The vehicle shall have mechanisms to load and transport the CPP UGV into the
disaster zone.

SD2 The vehicle shall hold a payload volume of 12x7x7in. (LxWxH).

SD3 The vehicle shall house all avionics on a removable electronics tray.

SD4
There shall be adequate documentation describing the assembly and operation of the
UGV

SM1 The vehicle shall have autonomous waypoint navigation.

SM2
The vehicle shall be able to autonomously detect and avoid obstacles during
navigation.

SM3
The vehicle shall utilize first person view (FPV) video devices for all manual control
through the GCS.

SM4 The vehicle shall be able to maneuver over obstacles of 2" in height.

SM5 The vehicle shall be able to drive up a 36% grade slope.

SM6 The vehicle shall have a range of 3000ft. on flat ground.

7

Table 1: Stakeholder Requirements

Capstone System Requirements
The system requirements below outlines how we will design our vehicle. These requirements
flowdown from system requirements for the entire CPSLO UGV requirements we derived
from the stakeholder requirements. The CPSLO UGV requirements can be found in our
appendix.

SM7 The vehicle shall have the capability of mission speed of 3mph on level surface.

Capstone System Requirements

ID Subsystem Requirement

Meets
Stakeholder
Requirements

Meets BUGV
System
Requirements

SR1 MECH
The vehicle shall have enough power to
transport the avionics package SD1 BUGV-SR

SR1.2
ELEC,
MECH

The vehicle avionics shall fit on a
removable electronics tray SD3 BUGV-SR.2

SR2
ELEC,
MECH

The vehicle shall drive in a controlled
manner. SM7 BUGV-SR3

SR2.1 ELEC, SENS
The vehicle shall be capable of 3mph
while operating. SM7 BUGV-SR3.1

SR2.1.1 ELEC, SENS
The vehicle shall measure its ground
speed to within +/- 0.5 mph. SM5, SM7 BUGV-SR3.1.1

SR2.2 ELEC, SENS
The vehicle shall have precise control
of its speed to within +/- 0.5 mph. SM5, SM7 BUGV-SR3.3

SR2.3 ELEC The vehicle shall have a kill switch. - -

SR3
ELEC,
SENS, SW

The vehicle shall be capable of short
range automated navigation via
external waypoint. SM1 BUGV-SR4

8

Table 2: Capstone System Requirements

Capstone System Use Cases
The following use cases outline the human interfaces our end deliverable will need to cover.

SR3.1 SW
There shall be an interface for the user
to input waypoints into the vehicle. SM1 BUGV-SR4.1

SR3.2 SENS, SW
The vehicle shall autonomously detect
obstacles during waypoint navigation. SM1, SM2 BUGV-SR4.2

SR3.2.1 SW
The vehicle shall be capable of
evaluating collisions at at least 1 Hz. SM1, SM2 BUGV-SR4.2.1

SR3.3 SW
The vehicle shall autonomously avoid
obstacles during waypoint navigation. SM1, SM2 BUGV-SR4.3

SR3.4 SENS The vehicle shall determine its position. SM1 BUGV-SR4.4

SR3.4.1 SENS, SW
The vehicle shall have position
knowledge of +/- 0.5 ft. SM1 BUGV-SR4.4.1

Capstone System Use Cases

ID Name Actor(s) Description Normal Flow Exceptions Assumptions

1
Waypoint
Interface Operator

Input
waypoint to
UGV

Operator will input two
waypoints which will
then start the car to
autonomously navigate
between the two
waypoints.

Kill switch is
enabled. N/A

2 Kill Switch Operator

Hardware or
software
implementati
on to disable
the vehicle.

Enabling kill switch will
force vehicle to stop
and cease all
operations. N/A

Kill switch has
redundancy to
ensure
reliability.

9

Table 3: Capstone System Use Cases

3
Post-Mission
Analysis

Customer,
Tester,
Operator

Log
telemetry for
later analysis

Telemetry will be
streamed to various
clients connected to the
network the vehicle
operates on. This real
time data can be
visualized in real time
on these clients.
Telemetry and raw
operation metrics will
also be stored on the
vehicle for later
retrieval. N/A

Vehicle will
have a
communication
s link that will
allow data to be
streamed.

10

Design Development

Hardware
All hardware concept designs were created with the goal to empower sensor testing by
providing a platform that is easily modifiable, and makes it easy to test a variety of different
scenarios that the final CPSLO UGV might encounter. Additionally, a wide variety of sensors
were considered to provide effective navigation data.

Plexiglass board with mounted components
The idea of a plexiglass board came up as an initial method of beginning sensor testing early
without relying on the need for a prototype vehicle.

Figure 1: Plexiglass board with mounted components

RC car with mounted components
As the quarter progressed and the project details were clarified, it became evident that it
would be more effective to test our peripherals while in motion to ensure that our navigation
system is robust and reliable. Below are some more specific designs involving this testing
rig.

1) RC Car with ultrasonic sensor on edges:​ Placed along the edges of the rc car,
ultrasonic sensors can be used to send and prevent collisions with objects that our
car is approaching. The limitation is that each sensor has a relatively small sensing
range. In order to cover a full side, we may require 3 or even 4 sensors.

11

Figure 2: RC car with ultrasonic sensors

2) RC Car with LiDAR: ​Unlike the ultrasonic sensors, a LiDAR is able to get more

points of coverage by spinning 360 degrees. The only downside with this design is
that the LiDAR returns a 2-d plane of points, rather than a 3-d mapping. This means
that our object detection would only happen at a specific height every time a full
rotation is made.

Figure 3: RC car with LiDAR

3) RC Car with Stereoscopic Camera: ​Because we will always be driving forward, it

may be worth it to trade off 360 degrees of coverage for a wider field of view of data
at the front of the UGV. A stereoscopic camera is able to take two images and
interpolate the depth of different items in the images. The benefit is that the front
would have extensive coverage. The downside is that the rest of the car would have
none.

12

Figure 4: RC car with stereoscopic camera

In the end, we decided to stick with using just the stereoscopic camera and the LiDAR. We
developed the vehicle using these two components for all of our visualization needs.

Stereoscopic Camera
We started off trying to use an Intel RealSense D435i camera. There was a lot of
experimentation done in order to get the camera working with ROS, but there were
compatibility issues between the camera and the computer that we were using, the Jetson
Nano. As a result, we chose a different stereoscopic camera to use instead, the ZED Mini.
This camera was fully supported by the Jetson Nano, and there were a ton of sample ROS
nodes available for it.

Pixhawk
Partway through Winter Quarter, we learned that the NGCP software team would be using a
Pixhawk in order to control the final vehicle. In order to maintain full compatibility with the
future vehicle, we added one to our plexiglass board. We also needed an external GPS and
compass to work with the Pixhawk, so that was also added to our board.

Software
After installing ROS onto the Jetson Nano, we began software development by trying to
interface with both the ZED Mini stereoscopic camera and the LiDAR. Both of these devices
had sample ROS nodes available that would launch the device and display visual
information in real time using RViz. There were many sample ROS nodes available for us to
further test with. One notable one was ​zed_rtabmap_example​, which uses the ​rtabmap_ros
package in order to generate a 3D map from the data produced by the ZED camera.

13

After we were confident about the compatibility of the sensors and the feasibility of our plans,
we wrote our own ROS nodes to accomplish our specific tasks. We started off by setting up
our ​tf​ node to handle the spatial transformations between the Jetson Nano, RPLiDAR, and
ZED Mini camera. We modified the ​zed_rtabmap_example​ node in order to take in LiDAR
data as well and use our ​tf​ node. We then worked on our node that handles the core logic for
the SLO UGV. This node takes in an occupancy grid that we generated with ​rtabmap​ as well
as odometry data from the ZED Mini. The node also implements ​teb_local_planner​, which
can perform local navigation based on obstacle data. From here, we were able to send
commands to the Pixhawk using MAVROS, which has the ability to convert between ROS
topics and MAVLink messages. MAVLink messages are the messages used by vehicles
running ArduPilot, the firmware loaded onto the Pixhawk.

14

Final Detailed Design
Our final system design was an acrylic board with evenly spaced holes that could be used
for mounting each component in a variety of configurations. The top down view in Figure 5
distinctly shows our chosen placement for each component. This design was chosen
because it allows easy access to each sensor and can be quickly added or removed from
the rc car for testing or coding purposes. On the acrylic itself we have mounted a 2d LiDAR,
a stereoscopic camera, the Jetson Nano, the PixHawk PX4, the PMIC, and additional
supporting equipment.

Figure 5.​ ​Angled and top down views of the vision system

The software architecture of the final system consists of a Robot Operating System (ROS)
package that contains logic for tying dependencies for mavlink communication, navigation
using the teb local planner, ZED mini SDK, and scan data from the RPLidar. All together, the
system takes the data from the environment and a destination waypoint to generate an
occupancy grid and a series of poses to traverse the occupancy grid to reach the final
destination. Figure 6 shows a high level system diagram of the software architecture for our
vision system as well as the external components that it will be connected to.

15

Figure 6: Software Schematic

Figure 7: Arbitrary Goal Mapping and Pathing Visualization with Camera View

In the navigation system repo (​https://github.com/justinnuwin/NGCP-Capstone-UGV​) the
core of the project lives in ​NGCP-Capstone-UGV​/​ros​/​src​/​bugv​/. This is the ROS node for the
Bugv which ties together the various technologies used in the navigation system.

The launch directory stores ROS launch configurations for the various parts of the navigation
system. The rviz directory stores the ROS visualization configuration for the graphical
visualization tool.

https://github.com/justinnuwin/NGCP-Capstone-UGV
https://github.com/justinnuwin/NGCP-Capstone-UGV
https://github.com/justinnuwin/NGCP-Capstone-UGV/tree/master/ros
https://github.com/justinnuwin/NGCP-Capstone-UGV/tree/master/ros/src
https://github.com/justinnuwin/NGCP-Capstone-UGV/tree/master/ros/src/bugv

16

The src directory stores the source files for the navigation system. The current modules are
bugv_control, bugv_nav, and bugv_logic. The control module concerns interfacing with the
PixHawk such as setting it into Guided/auto mode, and commanding it to drive the vehicle.
The navigation module handles mission planning and navigation. It uses the
teb_local_planner to plan routes using waypoints. The logic module ties the two other
modules together.

The URDF directory stores the robot definition file which contains the location and
orientation of all the sensors on the robot to align the frames of robot telemetry and fuse the
data.

The Bugv ROS node and its dependencies are portable to all architectures that support
ROS. In our case, the testbed utilized the Nvidia Jetson Nano which runs on the aarch64
architecture. Many other embedded processors like the Raspberry Pi also support ROS and
all the dependencies for running the Bugv ROS node.

17

System Integration & Testing

Capstone System Requirements Met
SR1 - The vehicle shall have enough power to transport the avionics package
SR1.2 - The vehicle avionics shall fit on a removable electronics tray
SR2.1 - The vehicle shall be capable of 3 mph while operating.
SR3.2.1 - The vehicle shall be capable of evaluating collisions at at least 1 Hz.
SR3.4 - The vehicle shall determine its position.
SR3.4.1 - The vehicle shall have position knowledge of +/- 0.5 ft.

Capstone System Requirement Partially Met
SR2.3 - The vehicle shall have a kill switch.
SR3 - The vehicle shall be capable of short range automated navigation via external
waypoint.
SR3.1 - There shall be an interface for the user to input waypoints into the vehicle.
SR3.2 - The vehicle shall autonomously detect obstacles during waypoint navigation.

For SR2.3, a hardware killswitch has been added to the PixHawk, but for some testing
purposes it has been removed. It is recommended to keep the switch attached and enabled.
A software killswitch is implemented in the bugv_nav module which controls the state of the
PixHawk. Several failure modes have been identified which will put the PixHawk into HOLD
mode such as disconnection from the controller process’ network connection.

For SR3.1, A robust method for entering waypoints has not been established. Currently the
waypoints are coded into the bugv_nav module and require the node to be recompiled when
updated. Implementing a TCP or GCS listener to dynamically update this is built in
functionality for the Mavros dependency hence the requirement is partially met.

See below for an explanation for SR3.2. This is tied to the lack of closed loop control.

Capstone System Requirement Not Met
SR2 - The vehicle shall drive in a controlled manner.
SR2.1.1 - The vehicle shall measure its ground speed to within +/- 0.5 mph.
SR2.2 - The vehicle shall have precise control of its speed to within +/- 0.5 mph.
SR3.3 - The vehicle shall autonomously avoid obstacles during waypoint navigation.

During the design phase of this Capstone project, we had initially planned to test our
navigation closed loop with an RC car that was available to our team. During the
implementation phase we quickly found that the vehicle we were using (RedCat Racing
Volcano EPX 1/10 scale) would not work for our testbed since the vehicle is geared for quick

18

acceleration and high speeds. The vehicle does not include onboard odometry either. The
motor on the vehicle used was not geared for low speed or low acceleration operation which
is necessary for the precise movements we would be testing the Bugv under. We worked
around this difficulty by designing the navigation system to work in tandem with the control
system of the vehicle. We demonstrated our system’s ability to do this by driving the vehicle
manually following the waypoints it set by eye. These requirements are only defined as not
met since they do not encompass the original vision that they were written under, which is
the idea of closed loop control of the vehicle using the telemetry and commands from the
navigation system. Since there was a pivot in the approach to the project after some
implementation was completed, we decided to stick with this vehicle to accomodate the
approaching deadline and pushed the odometry requirements to the NGCP team since they
are developing a vehicle which will support this natively in their control system.

Future Work
Tie odometry from sensor telemetry and sensor fusion into the PixHawk navigation system.
This only applies if the NGCP team decides to use the PixHawk as their primary navigation
controller rather than opting to use the ROS navigation stack. Some implementations that
were looked at include OpenKAI and extensions to ROS.

A more robust method for entering waypoints can be developed which could tie into the
NGCP Mavlink based GCS. The functionality for adding waypoints is already implemented in
the bugv_nav module and the MavROS dependency. Fully flushing out the implementation
requires testing with the NGCP GCS.

Obstacle avoidance and pathing could be made much more robust with further testing and a
better idea of the course the robot will be navigating through.

19

Management Plan
Equipment that is being handed off to NGCP:

- Acrylic Board
- Jetson Nano
- RPLiDAR A2M8
- Zed-Mini
- PMIC

NGCP Equipment On Loan:

- 3DR PixHawk PX4
- 3DR GPS+Digital Compass
- Killswitch

Capstone/External Equipment:

- OrangeRX 6-Ch RC Receiver
- 4-Port USB Hub
- TL-WN722NV1 USB WiFi adapter
- 2S and 3S LiPos
- LiPo Battery Charger
- RC Car

With the equipment that is being handed off to NGCP, the supplied user guide, and GitHub
repository should provide all the necessary documentation to allow the NGCP team to get up
to speed and develop with the navigation system that we have designed. In addition, to
facilitate the hand off, one of the members of the Capstone group will assist the NGCP team
with integration in the Spring Quarter.

20

References
Guilherme, Affonso. “ROBOTIS-JAPAN-GIT/turtlebot3_slam_3d.” GitHub, 6 Dec. 2018,

github.com/ROBOTIS-JAPAN-GIT/turtlebot3_slam_3d.

Huang, Sam. “How the Autonomous Car Works: A Technology Overview.” Medium, Medium,
25 Apr. 2018,
medium.com/@thewordofsam/how-the-autonomous-car-works-a-technology-overview-
5c1ac468606f.

Stewart, Jack. “Self-Driving Cars Use Crazy Amounts of Power, and It's Becoming a
Problem.” ​Wired​, Conde Nast, 6 Feb. 2018,
www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/​.

http://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/

21

Appendix

Bill of Materials

Table 4: Cost Breakdown of Prototype

Part Name Price

Zed Mini $449

RPLIDAR A2 $319

Jetson Nano $99

Pixhawk $100

Plexiglass Board $10

3DR uBlox GPS with Compass $90

Total Cost $1067

22

Gantt Chart

Figure 8: Gantt Chart for Fall and Winter Quarter Planning

23

NGCP CPSLO UGV System Requirements

NGCP CPSLO UGV (BUGV) System Requirements

ID Subsystem Requirement

Meets
Stakeholder
Requirements

Verification
Method Verification Validation

BUGV
-SR1 MECH

The vehicles
shall have
adequate
horsepower to
transport the
CPP UGV. SD1 D

Load CPSLO
UGV with CPP
UGV and
verify control
systems under
constraints
listed under
this
requirement.

The
primary role
of the
CPSLO
UGV is to
transport
the CPP
UGV.

BUGV
-SR1.

1 MECH

The vehicle shall
have adequate
volume to house
the CPP UGV. SD1 D

Load CPSLO
UGV with CPP
UGV and
verify fit within
mechanical
constraints XX.

The
primary role
of the
CPSLO
UGV is to
transport
the CPP
UGV.

BUGV
-SR1.

1.1 MECH

The vehicle shall
have a payload
volume of at
least 12x7x7in
(LxWxH). SD2 I

Physically
measure
payload
volume and
cross
reference with
CAD design.

The
primary role
of the
CPSLO
UGV is to
transport
the CPP
UGV.

BUGV
-SR1.

2
ELEC,
MECH

The vehicle
avionics shall fit
on a removable
electronics tray SD3 I

All electronics
should reside
on electronics
tray during
normal
operation. The
tray shall be
removable.

This will
allow
quicker
processing
in the event
of testing or
electrical
hardware
failure/repla
cement.

BUGV
-SR2 MECH

The vehicle shall
be built to
traverse
obstacles and
rough terrain. SM4, SM5 D

Drive the
vehicle
through
uneven terrain
with obstacles

The UGV is
intended for
use in
disaster
scenarios

24

larger than 2"
tall. Determine
if the vehicle
was able to
successfully
move through.

in which
terrain
environmen
ts may not
be the most
desirable

BUGV
-SR2.

1 MECH

The vehicle shall
have enough
torque to
maintain its
speed up a 36%
grade slope, SM5 D

A 36% grade
slope shall be
built similar to
operating
conditions and
the CPSLO
UGV shall be
able to
traverse the
slope at half
and full speed
at +/- XX.

The UGV
would be
unable to
carry itself
and the
payload up
a hill
without
enough
torque

BUGV
-SR2.

2 MECH

The vehicle shall
be able to
maneuver over
obstacles 2" in
height. SM4 D

Drive the
vehicle
through
uneven terrain
with obstacles
up to 2" tall.
Determine if
the vehicle
was able to
successfully
move through.

Obstacles
of up to 2"
need to be
traversed
over

BUGV
-SR3

ELEC,
MECH

The vehicle shall
drive in a
controlled
manner. SM7 D

Drive the
vehicle on an
obstacle
course around
different
objects.

The UGV
requires
manual
control

BUGV
-SR3.

1
ELEC,
SENS

The vehicle shall
be capable of
3mph while
operating. SM7 T

Test driving
the vehicle at
max speed
and confirm
avionics read
the same
speed.

Required
per
specificatio
n.

BUGV
-SR3.

1.1
ELEC,
SENS

The vehicle shall
measure its
ground speed to
within +/-
XXmph. SM5, SM7 T

Test driving
the vehicle at
max speed
and confirm
avionics read
the same

Required in
order to
ensure that
the UGV
does not
drive above

25

speed. its max
speed of
3mph.

BUGV
-SR3.

3
ELEC,
SENS

The vehicle shall
have precise
control of its
speed to within
+/- XXmph. SM5, SM7 T

Test driving
the vehicle at
max speed,
half speed,
and quarter
speed and
confirm
avionics read
the same
speed.

Required in
order to
ensure that
the UGV
does not
drive above
its max
speed of
3mph.

BUGV
-SR4

ELEC,
SENS, SW

The vehicle shall
be capable of
automated
control via
waypoint
navigation SM1 T

Designate a
destination for
the vehicle to
drive to, and
allow the
software to
navigate itself
towards the
destination.
Determine if
the destination
was reached.

Required
per
specificatio
n.

BUGV
-SR4.

1 SW

There shall be
an interface for
the user to input
waypoints into
the UGV. SM1 I, T

Verify interface
exists to input
waypoints.
Test that
waypoints are
loaded onto
the UGV
correctly.

The UGV
will need to
be given
waypoints
to complete
the
automated
navigation
portion of
its mission.

BUGV
-SR4.

2 SENS, SW

The vehicle shall
autonomously
detect obstacles
during waypoint
navigation. SM1, SM2 D

In situ test of
UGV in
waypoint
navigation
mode
detecting
obstacles in its
path.

The UGV
must
intelligently
avoid
obstacles
to arrive at
its
destination.

BUGV
-SR4.

2.1 SW

The vehicle shall
be capable of
evaluating
collisions at
atleast XX Hz. SM1, SM2 T, A

Developmental
and in situ test
of vehicle
evaluating
collisions with

The UGV
hardware
must be
quick
enough to

26

objects at the
XX rate or
better,
theoretically
allowing the
UGV to
navigate at
half the speed
of XX.

respond to
the
environmen
t in
real-time

BUGV
-SR4.

3 SW

The vehicle shall
autonomously
avoid obstacles
during waypoint
navigation. SM1, SM2 D

In situ test of
UGV in
waypoint
navigation
mode not
coming within
XX of
obstacles.

The UGV
needs to
autonomou
sly detect
and avoid
obstacles

BUGV
-SR4.

4 SENS

The vehicle shall
determine its
position. SM1 T

Measure
position and
move the
vehicle and
remeasure
position.

The UGV
needs to
know its
position for
autonomou
s waypoint
navigation

BUGV
-SR4.

4.1 SENS, SW

The vehicle shall
have position
knowledge of +/-
XX ft. SM1 T

Measure
position and
move the
vehicle and
remeasure
position.
Characterize
performance
inside and
outside the
uncertainty
area.

Position
knowledge
is required
for
waypoint
navigation.

BUGV
-SR5 SW

The vehicle shall
have a manual
control mode. SM3 D

Use the
software to
manually drive
UGV through
the GCS link.

The
CPSLO
UGV
requires
manual
control

BUGV
-SR5.

1 ELEC, SW

The vehicle shall
support local
manual
operation. SM3 I, D

There shall be
a connector on
the UGV to
connect a
computer/contr
oller and

The
CPSLO
UGV
requires
manual
control

27

Table 5: NGCP CPSLO UGV System Requirements

manually drive
the vehicle.

BUGV
-SR5.

2 SW

The vehicle shall
support remote
manual
operation. SM3 D

Use the
software to
manually drive
UGV through
the GCS link.

The
CPSLO
UGV
requires
manual
control

BUGV
-SR5.

2.1 SW

The vehicle shall
stream a FPV
video feed to the
driver. SM3 D

The software
to manually
drive the UGV
through the
GCS link shall
stream FPV
video as well.

In order to
manually
control the
UGV, the
driver must
have an
idea of the
environmen
t and
possible
routes.

BUGV
-SR5.
2.1.1 SW

The FPV feed
shall have
resolution of XX. SM3 I

The FPV
stream shall
transmit
images of XX
resolution.

THE UGV
requires
first person
view

BUGV
-SR5.

3 ELEC

The vehicle shall
have a
communications
range of at least
3000ft. SM6 T

Test data loss
at different
ranges and
confirm that it
is below some
tolerable range

The UGV
requires
range of
3000ft

