
 

 

Final Design Report 
NavG - NGCP 

Gonzalo Arana 
Alexander Garcia 

Justin Nguyen 
Andy Velazquez 

 
  

 



1 

 

Introduction 2 
Project Overview 2 
Clients & Community Partners 2 
Stakeholders 2 
Project Goals and Objectives 2 
Project Outcomes and Deliverables 3 

Background 4 
Mission Overview 4 
Similar Systems 4 

Modern Self-Driving Cars 4 
Peripheral Information 5 

RPLiDAR A2 5 
ZED Mini Stereoscopic Camera 5 
Jetson Nano 5 

Engineering Specifications 6 
Stakeholder Requirements 6 
Capstone System Requirements 7 
Capstone System Use Cases 8 

Design Development 10 
Hardware 10 

Plexiglass board with mounted components 10 
RC car with mounted components 10 
Stereoscopic Camera 12 
Pixhawk 12 

Software 12 

Final Detailed Design 14 

System Integration & Testing 17 
Capstone System Requirements Met 17 
Capstone System Requirement Partially Met 17 
Capstone System Requirement Not Met 17 
Future Work 18 

Management Plan 19 

References 20 

Appendix 21 
Bill of Materials 21 
Gantt Chart 22 
NGCP CPSLO UGV System Requirements 23 

 



2 

Introduction 
Our Capstone team is assisting the Northrop Grumman Collaboration Project (NGCP) with 
sensing and intelligence for one of their new vehicles. NGCP’s focus this year is to perform a 
rescue operation in a disaster zone using four autonomous vehicles, two from CP SLO and 
two from CP Pomona. The sensing and navigation system our team is designing is for the 
Cal Poly San Luis Obispo Unmanned Ground Vehicle (CPSLO UGV). This system will be 
used to autonomously and safely guide the CPSLO UGV through an obstacle course that 
simulates a field of debris in an actual natural disaster. 

Project Overview 
To safely navigate the obstacle course, the UGV will need to be constantly examining its 
surroundings, checking if there are any unoccupied and unvisited areas near it, and keeping 
record of all movements for backtracking. To handle the environmental awareness, the 
system uses a LiDAR and a stereoscopic camera in order to get as much information about 
its surroundings as possible. This sensor data is gathered, stored, and visualized in real time 
in a software platform named Robot Operating System (ROS). ROS also provides a global 
and local map that are capable of being updated in real time and display a grid of occupied 
and unoccupied spots nearby. This occupancy grid is then used to make decisions about 
where to travel and these decisions are ideally kept in a record that can be accessed later.  

Clients & Community Partners 
The primary client for this project is the Cal Poly SLO NGCP group. Northrop Grumman, who 
initially started and funded this project 8 years ago, is our client indirectly through NGCP. 
Our point of contact for Nothrop Grumman and issues relating to the NGCP program is Dr. 
Lynne Slivovsky. Our point of contact for the CPSLO UGV team is Michael Di Giorgio. 

Stakeholders 
Besides Northrop Grumman, the CPP and CPSLO NGCP groups, and our Capstone group, 
other stakeholders in this project include emergency services, police, fire, search and 
rescue, FEMA, organizations that conduct rescue for disasters, and volunteers for disaster 
rescue. Disaster victims and communities as a whole around disaster areas are also 
stakeholders. 

Project Goals and Objectives 
Our team’s goal is to design and implement the sensing and intelligence system for the 
CPSLO UGV that will allow it to complete its mission. The objectives necessary to meet this 
goal are as follows: 
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1. Interface with the mechanical design to ensure the sensing and intelligence system 
can adequately control the vehicle with the constraints set by the car’s components, 
mechanics, and capacity. 

2. Design a fully-tested object detection and avoidance system to enable autonomous 
driving within the constraints laid out by the customer. 

3. Design a fully-tested waypoint navigation system to provide guidance to the vehicle 
and (coupled with the collision detection and avoidance system) allow the vehicle to 
navigate to its intended target. 

4. Support a manual driving mode that enables the CPSLO UGV to be safely tested and 
operated. 

5. A fully integrated solution with the rest of the NGCP tools and ecosystem with ample 
documentation to ensure smooth knowledge transfer between teams and the 
customer. 

Project Outcomes and Deliverables 
By the end of next quarter, we will have all of the main navigation peripherals that the 
CPSLO UGV will use, as well as libraries written for interfacing with these peripherals. We 
will have also implemented basic autonomous navigation and obstacle avoidance using 
these peripherals. Given the different timelines that our team is operating on compared to 
the greater NGCP team, we will be demoing this functionality at the end of next quarter using 
a test vehicle separate from the real CPSLO UGV. This demo will likely take place at the 
Educational Flight Range, near Cuesta College. The demo will involve setting up an obstacle 
course at this site, consisting of obstacles such as cinder blocks, large rocks, and ramps. If 
there is sufficient progress made on the CPSLO UGV by the end of next quarter, then this 
demo may take place using the CPSLO UGV. 
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Background 

Mission Overview 
This design challenge provided by Northrop Grumman for the 2019-2020 school year is an 
autonomous rescue system composed of two terrain vehicles and two aerial vehicles. The 
goal for these vehicles is to perform a two-stage rescue. Stage one is reconnaissance and 
initial approach. This stage involves using an unmanned aerial vehicle (UAV) to determine 
where a person in need is located and instructing a larger, unmanned ground vehicle (UGV) 
to approach the area as quickly as possible without using any obstacle detection. Before 
leaving base, the larger UGV will load a smaller, rescue UGV inside of itself. The second 
stage is obstacle avoidance and extraction. As the large UGV reaches the disaster area, it 
will need to switch into an obstacle avoidance mode that will allow it to safely traverse debris 
as it approaches the person in need. Once at the destination, the smaller UGV will unload 
itself, approach and prepare the person for extraction, and await the person’s extraction 
using a vertical takeoff and landing (VTOL) vehicle. As the VTOL completes extraction, the 
two UGV robots will conviene, reload, and return to base.  

Similar Systems 

Modern Self-Driving Cars 
There are six main components for a self-driving car. The three main hardware components 
consist of sensors, V2X, and actuators. Sensors describe the components that allow the 
vehicle to gather information about the environment. V2X allows for communication between 
the vehicle and other components in the environment. Actuators enable the physical 
movement of the car. 
 
The three main software components for self driving cars are perception, planning, and 
control. Perception describes the analysis of data obtained from sensors and V2X. Planning 
refers to the decision making process that the car undergoes given the data that it can 
perceive. Control refers to the conversion of planned actions into actual movement through 
enabling the actuators. 
 
Our role in the project allows us to focus on three of these components: sensors, perception, 
and planning. Modern self-driving cars often use sensors such as GPS, IMUs, cameras, and 
LiDAR. According to Nvidia, a fully autonomous driverless car would need the computing 
power to perform 320 trillion operations per second and keep power consumption at 500 
watts. This computing power is what allows self driving cars to perform the perception and 
planning required to navigate a self-driving car. Given these insights into traditional 
self-driving cars, we have decided on a set of similar peripherals to look into using for the 
CPSLO UGV in order to perform the same type of behavior as traditional self-driving cars, 
but on a much smaller scale. 
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Peripheral Information 

RPLiDAR A2 
The RPLiDAR A2 is a 2D LiDAR. It has a scanning range of 18 meters and can retrieve 
8000 samples per second. There are ROS nodes available for use with the RPLiDAR. We 
are able to get 2D Laser Scan data from these nodes, which can be easily used as an input 
for SLAM and route planning. It’s also relatively low cost for a lidar, costing $370. 

ZED Mini Stereoscopic Camera 
The ZED Mini utilizes high definition stereo video in order to create 3D depth. It also has a 
built in accelerometer and gyroscope, allowing us to have an IMU built directly into the 
camera. The ZED Mini also has plenty of sample ROS nodes available on the internet. 
These nodes are able to retrieve data from the camera in point cloud form, allowing for easy 
integration with SLAM and local route planning tools. It is a little pricey, with a price tag of 
$399. However, this is significantly cheaper than other alternatives for providing a 3D point 
cloud, such as a 3D LiDAR.  

Jetson Nano 
The Jetson Nano is capable of running Desktop Linux, and by extension, ROS. ROS 
provides a lot of open source interfaces with popular peripherals, namely the ones that we 
planned on using for the vehicle. It also has support for SLAM, Simultaneous Localization 
and Mapping, an essential feature for performing navigation without the use of GPS. The 
Jetson Nano itself is able to process data from multiple sensors in parallel, and has the 
computing power to utilize neural networks and computer vision. It’s also rather inexpensive, 
costing only $99. Overall, it was able to connect with the peripherals that we chose to use for 
this vehicle, while also providing a means for easy support to use these peripherals. 
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Engineering Specifications  

Stakeholder Requirements 
The following stakeholder requirements were derived from the RFP from Northrop Grumman 
by our team and the NGCP management. 
 

 

Stakeholder Requirements 

ID Requirement 

SD1 
The vehicle shall have mechanisms to load and transport the CPP UGV into the 
disaster zone. 

SD2 The vehicle shall hold a payload volume of 12x7x7in. (LxWxH). 

SD3 The vehicle shall house all avionics on a removable electronics tray. 

SD4 
There shall be adequate documentation describing the assembly and operation of the 
UGV 

SM1 The vehicle shall have autonomous waypoint navigation. 

SM2 
The vehicle shall be able to autonomously detect and avoid obstacles during 
navigation. 

SM3 
The vehicle shall utilize first person view (FPV) video devices for all manual control 
through the GCS. 

SM4 The vehicle shall be able to maneuver over obstacles of 2" in height. 

SM5 The vehicle shall be able to drive up a 36% grade slope. 

SM6 The vehicle shall have a range of 3000ft. on flat ground. 
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Table 1: Stakeholder Requirements 

Capstone System Requirements 
The system requirements below outlines how we will design our vehicle. These requirements 
flowdown from system requirements for the entire CPSLO UGV requirements we derived 
from the stakeholder requirements. The CPSLO UGV requirements can be found in our 
appendix. 
 

 

SM7 The vehicle shall have the capability of mission speed of 3mph on level surface. 

Capstone System Requirements 

ID Subsystem Requirement 

Meets 
Stakeholder 
Requirements 

Meets BUGV 
System 
Requirements 

SR1 MECH 
The vehicle shall have enough power to 
transport the avionics package SD1 BUGV-SR 

SR1.2 
ELEC, 
MECH 

The vehicle avionics shall fit on a 
removable electronics tray SD3 BUGV-SR.2 

SR2 
ELEC, 
MECH 

The vehicle shall drive in a controlled 
manner. SM7 BUGV-SR3 

SR2.1 ELEC, SENS 
The vehicle shall be capable of 3mph 
while operating. SM7 BUGV-SR3.1 

SR2.1.1 ELEC, SENS 
The vehicle shall measure its ground 
speed to within +/- 0.5 mph. SM5, SM7 BUGV-SR3.1.1 

SR2.2 ELEC, SENS 
The vehicle shall have precise control 
of its speed to within +/- 0.5 mph. SM5, SM7 BUGV-SR3.3 

SR2.3 ELEC The vehicle shall have a kill switch. - - 

SR3 
ELEC, 
SENS, SW 

The vehicle shall be capable of short 
range automated navigation via 
external waypoint. SM1 BUGV-SR4 
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Table 2: Capstone System Requirements 

Capstone System Use Cases 
The following use cases outline the human interfaces our end deliverable will need to cover. 
 

 

SR3.1 SW 
There shall be an interface for the user 
to input waypoints into the vehicle. SM1 BUGV-SR4.1 

SR3.2 SENS, SW 
The vehicle shall autonomously detect 
obstacles during waypoint navigation. SM1, SM2 BUGV-SR4.2 

SR3.2.1 SW 
The vehicle shall be capable of 
evaluating collisions at at least 1 Hz. SM1, SM2 BUGV-SR4.2.1 

SR3.3 SW 
The vehicle shall autonomously avoid 
obstacles during waypoint navigation. SM1, SM2 BUGV-SR4.3 

SR3.4 SENS The vehicle shall determine its position. SM1 BUGV-SR4.4 

SR3.4.1 SENS, SW 
The vehicle shall have position 
knowledge of +/- 0.5 ft. SM1 BUGV-SR4.4.1 

Capstone System Use Cases 

ID Name Actor(s) Description Normal Flow Exceptions Assumptions 

1 
Waypoint 
Interface Operator 

Input 
waypoint to 
UGV 

Operator will input two 
waypoints which will 
then start the car to 
autonomously navigate 
between the two 
waypoints. 

Kill switch is 
enabled. N/A 

2 Kill Switch Operator 

Hardware or 
software 
implementati
on to disable 
the vehicle. 

Enabling kill switch will 
force vehicle to stop 
and cease all 
operations. N/A 

Kill switch has 
redundancy to 
ensure 
reliability. 
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Table 3: Capstone System Use Cases 

 
 

 

 

3 
Post-Mission 
Analysis 

Customer, 
Tester, 
Operator 

Log 
telemetry for 
later analysis 

Telemetry will be 
streamed to various 
clients connected to the 
network the vehicle 
operates on. This real 
time data can be 
visualized in real time 
on these clients. 
Telemetry and raw 
operation metrics will 
also be stored on the 
vehicle for later 
retrieval. N/A 

Vehicle will 
have a 
communication
s link that will 
allow data to be 
streamed. 
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Design Development  

Hardware 
All hardware concept designs were created with the goal to empower sensor testing by 
providing a platform that is easily modifiable, and makes it easy to test a variety of different 
scenarios that the final CPSLO UGV might encounter. Additionally, a wide variety of sensors 
were considered to provide effective navigation data. 

Plexiglass board with mounted components 
The idea of a plexiglass board came up as an initial method of beginning sensor testing early 
without relying on the need for a prototype vehicle. 
 

 
Figure 1: Plexiglass board with mounted components 

 

RC car with mounted components 
As the quarter progressed and the project details were clarified, it became evident that it 
would be more effective to test our peripherals while in motion to ensure that our navigation 
system is robust and reliable. Below are some more specific designs involving this testing 
rig. 
 

1) RC Car with ultrasonic sensor on edges:​ Placed along the edges of the rc car, 
ultrasonic sensors can be used to send and prevent collisions with objects that our 
car is approaching. The limitation is that each sensor has a relatively small sensing 
range. In order to cover a full side, we may require 3 or even 4 sensors. 
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Figure 2: RC car with ultrasonic sensors 

 
2) RC Car with LiDAR: ​Unlike the ultrasonic sensors, a LiDAR is able to get more 

points of coverage by spinning 360 degrees. The only downside with this design is 
that the LiDAR returns a 2-d plane of points, rather than a 3-d mapping. This means 
that our object detection would only happen at a specific height every time a full 
rotation is made. 

 
Figure 3: RC car with LiDAR 

 
3) RC Car with Stereoscopic Camera: ​Because we will always be driving forward, it 

may be worth it to trade off 360 degrees of coverage for a wider field of view of data 
at the front of the UGV. A stereoscopic camera is able to take two images and 
interpolate the depth of different items in the images. The benefit is that the front 
would have extensive coverage. The downside is that the rest of the car would have 
none. 
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Figure 4: RC car with stereoscopic camera 

 
In the end, we decided to stick with using just the stereoscopic camera and the LiDAR. We 
developed the vehicle using these two components for all of our visualization needs. 

Stereoscopic Camera 
We started off trying to use an Intel RealSense D435i camera. There was a lot of 
experimentation done in order to get the camera working with ROS, but there were 
compatibility issues between the camera and the computer that we were using, the Jetson 
Nano. As a result, we chose a different stereoscopic camera to use instead, the ZED Mini. 
This camera was fully supported by the Jetson Nano, and there were a ton of sample ROS 
nodes available for it. 

Pixhawk 
Partway through Winter Quarter, we learned that the NGCP software team would be using a 
Pixhawk in order to control the final vehicle. In order to maintain full compatibility with the 
future vehicle, we added one to our plexiglass board. We also needed an external GPS and 
compass to work with the Pixhawk, so that was also added to our board. 

Software 
After installing ROS onto the Jetson Nano, we began software development by trying to 
interface with both the ZED Mini stereoscopic camera and the LiDAR. Both of these devices 
had sample ROS nodes available that would launch the device and display visual 
information in real time using RViz. There were many sample ROS nodes available for us to 
further test with. One notable one was ​zed_rtabmap_example​, which uses the ​rtabmap_ros 
package in order to generate a 3D map from the data produced by the ZED camera. 
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After we were confident about the compatibility of the sensors and the feasibility of our plans, 
we wrote our own ROS nodes to accomplish our specific tasks. We started off by setting up 
our ​tf​ node to handle the spatial transformations between the Jetson Nano, RPLiDAR, and 
ZED Mini camera. We modified the ​zed_rtabmap_example​ node in order to take in LiDAR 
data as well and use our ​tf​ node. We then worked on our node that handles the core logic for 
the SLO UGV. This node takes in an occupancy grid that we generated with ​rtabmap​ as well 
as odometry data from the ZED Mini. The node also implements ​teb_local_planner​, which 
can perform local navigation based on obstacle data. From here, we were able to send 
commands to the Pixhawk using MAVROS, which has the ability to convert between ROS 
topics and MAVLink messages. MAVLink messages are the messages used by vehicles 
running ArduPilot, the firmware loaded onto the Pixhawk. 
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Final Detailed Design 
Our final system design was an acrylic board with evenly spaced holes that could be used 
for mounting each component in a variety of configurations. The top down view in Figure 5 
distinctly shows our chosen placement for each component. This design was chosen 
because it allows easy access to each sensor and can be quickly added or removed from 
the rc car for testing or coding purposes. On the acrylic itself we have mounted a 2d LiDAR, 
a stereoscopic camera, the Jetson Nano, the PixHawk PX4, the PMIC, and additional 
supporting equipment.  
 

 
Figure 5.​ ​Angled and top down views of the vision system  

 
The software architecture of the final system consists of a Robot Operating System (ROS) 
package that contains logic for tying dependencies for mavlink communication, navigation 
using the teb local planner, ZED mini SDK, and scan data from the RPLidar. All together, the 
system takes the data from the environment and a destination waypoint to generate an 
occupancy grid and a series of poses to traverse the occupancy grid to reach the final 
destination. Figure 6 shows a high level system diagram of the software architecture for our 
vision system as well as the external components that it will be connected to. 
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Figure 6: Software Schematic 

 

 
Figure 7: Arbitrary Goal Mapping and Pathing Visualization with Camera View 

 
In the navigation system repo (​https://github.com/justinnuwin/NGCP-Capstone-UGV​) the 
core of the project lives in ​NGCP-Capstone-UGV​/​ros​/​src​/​bugv​/. This is the ROS node for the 
Bugv which ties together the various technologies used in the navigation system.  
 
The launch directory stores ROS launch configurations for the various parts of the navigation 
system. The rviz directory stores the ROS visualization configuration for the graphical 
visualization tool. 

 

https://github.com/justinnuwin/NGCP-Capstone-UGV
https://github.com/justinnuwin/NGCP-Capstone-UGV
https://github.com/justinnuwin/NGCP-Capstone-UGV/tree/master/ros
https://github.com/justinnuwin/NGCP-Capstone-UGV/tree/master/ros/src
https://github.com/justinnuwin/NGCP-Capstone-UGV/tree/master/ros/src/bugv
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The src directory stores the source files for the navigation system. The current modules are 
bugv_control, bugv_nav, and bugv_logic. The control module concerns interfacing with the 
PixHawk such as setting it into Guided/auto mode, and commanding it to drive the vehicle. 
The navigation module handles mission planning and navigation. It uses the 
teb_local_planner to plan routes using waypoints. The logic module ties the two other 
modules together. 
 
The URDF directory stores the robot definition file which contains the location and 
orientation of all the sensors on the robot to align the frames of robot telemetry and fuse the 
data.  
 
The Bugv ROS node and its dependencies are portable to all architectures that support 
ROS. In our case, the testbed utilized the Nvidia Jetson Nano which runs on the aarch64 
architecture. Many other embedded processors like the Raspberry Pi also support ROS and 
all the dependencies for running the Bugv ROS node. 
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System Integration & Testing  

Capstone System Requirements Met 
SR1 - The vehicle shall have enough power to transport the avionics package 
SR1.2 - The vehicle avionics shall fit on a removable electronics tray 
SR2.1 - The vehicle shall be capable of 3 mph while operating. 
SR3.2.1 - The vehicle shall be capable of evaluating collisions at at least 1 Hz. 
SR3.4 - The vehicle shall determine its position. 
SR3.4.1 - The vehicle shall have position knowledge of +/- 0.5 ft. 

Capstone System Requirement Partially Met 
SR2.3 - The vehicle shall have a kill switch. 
SR3 - The vehicle shall be capable of short range automated navigation via external 
waypoint. 
SR3.1 - There shall be an interface for the user to input waypoints into the vehicle. 
SR3.2 - The vehicle shall autonomously detect obstacles during waypoint navigation. 
 
For SR2.3, a hardware killswitch has been added to the PixHawk, but for some testing 
purposes it has been removed. It is recommended to keep the switch attached and enabled. 
A software killswitch is implemented in the bugv_nav module which controls the state of the 
PixHawk. Several failure modes have been identified which will put the PixHawk into HOLD 
mode such as disconnection from the controller process’ network connection. 
 
For SR3.1, A robust method for entering waypoints has not been established. Currently the 
waypoints are coded into the bugv_nav module and require the node to be recompiled when 
updated. Implementing a TCP or GCS listener to dynamically update this is built in 
functionality for the Mavros dependency hence the requirement is partially met.  
 
See below for an explanation for SR3.2. This is tied to the lack of closed loop control. 

Capstone System Requirement Not Met 
SR2 - The vehicle shall drive in a controlled manner. 
SR2.1.1 - The vehicle shall measure its ground speed to within +/- 0.5 mph. 
SR2.2 - The vehicle shall have precise control of its speed to within +/- 0.5 mph. 
SR3.3 - The vehicle shall autonomously avoid obstacles during waypoint navigation. 
 
During the design phase of this Capstone project, we had initially planned to test our 
navigation closed loop with an RC car that was available to our team. During the 
implementation phase we quickly found that the vehicle we were using (RedCat Racing 
Volcano EPX 1/10 scale) would not work for our testbed since the vehicle is geared for quick 
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acceleration and high speeds. The vehicle does not include onboard odometry either. The 
motor on the vehicle used was not geared for low speed or low acceleration operation which 
is necessary for the precise movements we would be testing the Bugv under. We worked 
around this difficulty by designing the navigation system to work in tandem with the control 
system of the vehicle. We demonstrated our system’s ability to do this by driving the vehicle 
manually following the waypoints it set by eye. These requirements are only defined as not 
met since they do not encompass the original vision that they were written under, which is 
the idea of closed loop control of the vehicle using the telemetry and commands from the 
navigation system. Since there was a pivot in the approach to the project after some 
implementation was completed, we decided to stick with this vehicle to accomodate the 
approaching deadline and pushed the odometry requirements to the NGCP team since they 
are developing a vehicle which will support this natively in their control system. 

Future Work 
Tie odometry from sensor telemetry and sensor fusion into the PixHawk navigation system. 
This only applies if the NGCP team decides to use the PixHawk as their primary navigation 
controller rather than opting to use the ROS navigation stack. Some implementations that 
were looked at include OpenKAI and extensions to ROS. 
 
A more robust method for entering waypoints can be developed which could tie into the 
NGCP Mavlink based GCS. The functionality for adding waypoints is already implemented in 
the bugv_nav module and the MavROS dependency. Fully flushing out the implementation 
requires testing with the NGCP GCS. 
 
Obstacle avoidance and pathing could be made much more robust with further testing and a 
better idea of the course the robot will be navigating through. 

 



19 

Management Plan  
Equipment that is being handed off to NGCP: 

- Acrylic Board 
- Jetson Nano 
- RPLiDAR A2M8 
- Zed-Mini 
- PMIC 

 
NGCP Equipment On Loan: 

- 3DR PixHawk PX4 
- 3DR GPS+Digital Compass 
- Killswitch 

 
Capstone/External Equipment: 

- OrangeRX 6-Ch RC Receiver 
- 4-Port USB Hub 
- TL-WN722NV1 USB WiFi adapter 
- 2S and 3S LiPos 
- LiPo Battery Charger 
- RC Car 

 
With the equipment that is being handed off to NGCP, the supplied user guide, and GitHub 
repository should provide all the necessary documentation to allow the NGCP team to get up 
to speed and develop with the navigation system that we have designed. In addition, to 
facilitate the hand off, one of the members of the Capstone group will assist the NGCP team 
with integration in the Spring Quarter. 
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Appendix 

Bill of Materials 
 

 
Table 4: Cost Breakdown of Prototype 

 

Part Name Price 

Zed Mini $449 

RPLIDAR A2 $319 

Jetson Nano $99 

Pixhawk $100 

Plexiglass Board $10 

3DR uBlox GPS with Compass $90 

Total Cost $1067 
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Gantt Chart

 

Figure 8: Gantt Chart for Fall and Winter Quarter Planning 
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NGCP CPSLO UGV System Requirements 

 

NGCP CPSLO UGV (BUGV) System Requirements 

ID Subsystem Requirement 

Meets 
Stakeholder 
Requirements 

Verification 
Method Verification Validation 

BUGV
-SR1 MECH 

The vehicles 
shall have 
adequate 
horsepower to 
transport the 
CPP UGV. SD1 D 

Load CPSLO 
UGV with CPP 
UGV and 
verify control 
systems under 
constraints 
listed under 
this 
requirement. 

The 
primary role 
of the 
CPSLO 
UGV is to 
transport 
the CPP 
UGV. 

BUGV
-SR1.

1 MECH 

The vehicle shall 
have adequate 
volume to house 
the CPP UGV. SD1 D 

Load CPSLO 
UGV with CPP 
UGV and 
verify fit within 
mechanical 
constraints XX. 

The 
primary role 
of the 
CPSLO 
UGV is to 
transport 
the CPP 
UGV. 

BUGV
-SR1.

1.1 MECH 

The vehicle shall 
have a payload 
volume of at 
least 12x7x7in 
(LxWxH). SD2 I 

Physically 
measure 
payload 
volume and 
cross 
reference with 
CAD design. 

The 
primary role 
of the 
CPSLO 
UGV is to 
transport 
the CPP 
UGV. 

BUGV
-SR1.

2 
ELEC, 
MECH 

The vehicle 
avionics shall fit 
on a removable 
electronics tray SD3 I 

All electronics 
should reside 
on electronics 
tray during 
normal 
operation. The 
tray shall be 
removable. 

This will 
allow 
quicker 
processing 
in the event 
of testing or 
electrical 
hardware 
failure/repla
cement. 

BUGV
-SR2 MECH 

The vehicle shall 
be built to 
traverse 
obstacles and 
rough terrain. SM4, SM5 D 

Drive the 
vehicle 
through 
uneven terrain 
with obstacles 

The UGV is 
intended for 
use in 
disaster 
scenarios 
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larger than 2" 
tall. Determine 
if the vehicle 
was able to 
successfully 
move through. 

in which 
terrain 
environmen
ts may not 
be the most 
desirable 

BUGV
-SR2.

1 MECH 

The vehicle shall 
have enough 
torque to 
maintain its 
speed up a 36% 
grade slope, SM5 D 

A 36% grade 
slope shall be 
built similar to 
operating 
conditions and 
the CPSLO 
UGV shall be 
able to 
traverse the 
slope at half 
and full speed 
at +/- XX. 

The UGV 
would be 
unable to 
carry itself 
and the 
payload up 
a hill 
without 
enough 
torque 

BUGV
-SR2.

2 MECH 

The vehicle shall 
be able to 
maneuver over 
obstacles 2" in 
height. SM4 D 

Drive the 
vehicle 
through 
uneven terrain 
with obstacles 
up to 2" tall. 
Determine if 
the vehicle 
was able to 
successfully 
move through. 

Obstacles 
of up to 2" 
need to be 
traversed 
over 

BUGV
-SR3 

ELEC, 
MECH 

The vehicle shall 
drive in a 
controlled 
manner. SM7 D 

Drive the 
vehicle on an 
obstacle 
course around 
different 
objects. 

The UGV 
requires 
manual 
control 

BUGV
-SR3.

1 
ELEC, 
SENS 

The vehicle shall 
be capable of 
3mph while 
operating. SM7 T 

Test driving 
the vehicle at 
max speed 
and confirm 
avionics read 
the same 
speed. 

Required 
per 
specificatio
n. 

BUGV
-SR3.

1.1 
ELEC, 
SENS 

The vehicle shall 
measure its 
ground speed to 
within +/- 
XXmph. SM5, SM7 T 

Test driving 
the vehicle at 
max speed 
and confirm 
avionics read 
the same 

Required in 
order to 
ensure that 
the UGV 
does not 
drive above 
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speed. its max 
speed of 
3mph. 

BUGV
-SR3.

3 
ELEC, 
SENS 

The vehicle shall 
have precise 
control of its 
speed to within 
+/- XXmph. SM5, SM7 T 

Test driving 
the vehicle at 
max speed, 
half speed, 
and quarter 
speed and 
confirm 
avionics read 
the same 
speed. 

Required in 
order to 
ensure that 
the UGV 
does not 
drive above 
its max 
speed of 
3mph. 

BUGV
-SR4 

ELEC, 
SENS, SW 

The vehicle shall 
be capable of 
automated 
control via 
waypoint 
navigation SM1 T 

Designate a 
destination for 
the vehicle to 
drive to, and 
allow the 
software to 
navigate itself 
towards the 
destination. 
Determine if 
the destination 
was reached. 

Required 
per 
specificatio
n. 

BUGV
-SR4.

1 SW 

There shall be 
an interface for 
the user to input 
waypoints into 
the UGV. SM1 I, T 

Verify interface 
exists to input 
waypoints. 
Test that 
waypoints are 
loaded onto 
the UGV 
correctly. 

The UGV 
will need to 
be given 
waypoints 
to complete 
the 
automated 
navigation 
portion of 
its mission. 

BUGV
-SR4.

2 SENS, SW 

The vehicle shall 
autonomously 
detect obstacles 
during waypoint 
navigation. SM1, SM2 D 

In situ test of 
UGV in 
waypoint 
navigation 
mode 
detecting 
obstacles in its 
path. 

The UGV 
must 
intelligently 
avoid 
obstacles 
to arrive at 
its 
destination. 

BUGV
-SR4.

2.1 SW 

The vehicle shall 
be capable of 
evaluating 
collisions at 
atleast XX Hz. SM1, SM2 T, A 

Developmental 
and in situ test 
of vehicle 
evaluating 
collisions with 

The UGV 
hardware 
must be 
quick 
enough to 
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objects at the 
XX rate or 
better, 
theoretically 
allowing the 
UGV to 
navigate at 
half the speed 
of XX. 

respond to 
the 
environmen
t in 
real-time 

BUGV
-SR4.

3 SW 

The vehicle shall 
autonomously 
avoid obstacles 
during waypoint 
navigation. SM1, SM2 D 

In situ test of 
UGV in 
waypoint 
navigation 
mode not 
coming within 
XX of 
obstacles. 

The UGV 
needs to 
autonomou
sly detect 
and avoid 
obstacles 

BUGV
-SR4.

4 SENS 

The vehicle shall 
determine its 
position. SM1 T 

Measure 
position and 
move the 
vehicle and 
remeasure 
position. 

The UGV 
needs to 
know its 
position for 
autonomou
s waypoint 
navigation 

BUGV
-SR4.

4.1 SENS, SW 

The vehicle shall 
have position 
knowledge of +/- 
XX ft. SM1 T 

Measure 
position and 
move the 
vehicle and 
remeasure 
position. 
Characterize 
performance 
inside and 
outside the 
uncertainty 
area. 

Position 
knowledge 
is required 
for 
waypoint 
navigation. 

BUGV
-SR5 SW 

The vehicle shall 
have a manual 
control mode. SM3 D 

Use the 
software to 
manually drive 
UGV through 
the GCS link. 

The 
CPSLO 
UGV 
requires 
manual 
control 

BUGV
-SR5.

1 ELEC, SW 

The vehicle shall 
support local 
manual 
operation. SM3 I, D 

There shall be 
a connector on 
the UGV to 
connect a 
computer/contr
oller and 

The 
CPSLO 
UGV 
requires 
manual 
control 
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Table 5: NGCP CPSLO UGV System Requirements 

 

 

manually drive 
the vehicle. 

BUGV
-SR5.

2 SW 

The vehicle shall 
support remote 
manual 
operation. SM3 D 

Use the 
software to 
manually drive 
UGV through 
the GCS link. 

The 
CPSLO 
UGV 
requires 
manual 
control 

BUGV
-SR5.

2.1 SW 

The vehicle shall 
stream a FPV 
video feed to the 
driver. SM3 D 

The software 
to manually 
drive the UGV 
through the 
GCS link shall 
stream FPV 
video as well. 

In order to 
manually 
control the 
UGV, the 
driver must 
have an 
idea of the 
environmen
t and 
possible 
routes. 

BUGV
-SR5.
2.1.1 SW 

The FPV feed 
shall have 
resolution of XX. SM3 I 

The FPV 
stream shall 
transmit 
images of XX 
resolution. 

THE UGV 
requires 
first person 
view 

BUGV
-SR5.

3 ELEC 

The vehicle shall 
have a 
communications 
range of at least 
3000ft. SM6 T 

Test data loss 
at different 
ranges and 
confirm that it 
is below some 
tolerable range 

The UGV 
requires 
range of 
3000ft 


